
Generative model paper discussion (By Alex) 

 

Theory 

 
Deep Image Prior (CVPR18, Dmitry Ulyanov) 
l Inductive bias: a great deal of image statistics are captured by the structure of a convolutional 

image generator independent of learning.  
l We now show that, while indeed almost any image can be fitted, the choice of network 

architecture has a major effect on how the solution space is searched by methods such as 
gradient descent. 

l The parametrization offers high impedance to noise and low impedance to signal. 
l Application: 1.Denoising and generic reconstruction 2.Super-resolution 3.Inpainting 4.Natural 

pre-image 5.Flash-no flash reconstruction 
 
Flow based model 
 
Variational Inference with Normalizing Flows (ICML15, Google, Shakir Mohamed) 
l We study deep latent Gaussian models (DLGM), which are a general class of deep directed 

graphical models that consist of a hierarchy of L layers of Gaussian latent variables z_l for 
layer l. 

 

l Reparameterization and Montecarlo 

 
l It is natural to consider the case in which the length of the normalizing flow tends to infinity.  

From  into: 

 

 
Glow: Generative Flow with Invertible 1×1 Convolutions (NIPS18, OpenAI, Google AI) 
l Two major unsolved problems in the field of machine learning are (1) data-efficiency: the 

ability to learn from few datapoints, like humans; and (2) generalization: robustness to changes 
of the task or its context.  

l A promise of generative models, a major branch of machine learning, is to overcome these 
limitations by: (1) learning realistic world models, potentially allowing agents to plan in a 



world model before actual interaction with the world, and (2) learning meaningful features of 
the input while requiring little or no human supervision or labeling. Since such features can 
be learned from large unlabeled datasets and are not necessarily task-specific, downstream 
solutions based on those features could potentially be more robust and more data efficient.  

l Merits: (1) Exact latent-variable inference and log-likelihood evaluation(not a lower bound) 
(2) Efficient (parallelize) (3) Useful latent space for downstream tasks: beat GANs and CNNs 
(4) Memory savings 

l How is 1*1 convolution kernel working: it changes the depth of the data. 

 
 
Invertible Residual Networks (ICML19) 
 
l One of the main appeals of neural network-based models is that a single model architecture 

can often be used to solve a variety of related tasks. Generative tasks – flow, discriminative 
learning – deep residual. 

 
Autoregressive model 
 
Pixel Recurrent Neural Networks (ICML16, Google) 
l Recurrent Neural Networks (RNN) are powerful models that offer a compact, shared 

parametrization of a series of conditional distributions. 
l Autoregressive model. 
 



Improved Variational Inference with Inverse Autoregressive Flow (NIPS16, OpenAI) 
l Scales well to high-dimensional latent spaces. 

l  
 
Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation (ICLR24, Google, 
CMU) 
l One crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens 

appropriate for LLM learning. 
l Why do language models lag behind diffusion models in visual generation? This paper 

suggests that a primary reason is the lack of a good visual representation, resembling our 
natural language system, for effectively modeling the visual world. 

l Merits: (1) Compatibility with LLMs (2) Compressed representation (3) Visual understanding 
benefits. 

l The first evidence suggesting that a language model can outperform diffusion models on 
ImageNet when provided with the same training data, an equivalent model size, and a similar 
training budget. 

 

 
Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction (Keyu 



Tian) 
l Studies into the success of these large AR models have highlighted their scalability and 

generalizabilty: the former, as exemplified by scaling laws, allows us to predict large model’s 
performance from smaller ones and thus guides better resource allocation, while the latter, as 
evidenced by zero-shot and few-shot learning, underscores the unsupervised-trained models’ 
adaptability to diverse, unseen tasks. These properties reveal AR models’ potential in learning 
from vast unlabeled data, encapsulating the essence of “AGI”. 

 
l Scaling laws. 

 
 
An Image is Worth 32 Tokens for Reconstruction and Generation (ByteDance) 
l Translating raw pixels into a latent space. 
l TiTok provides a more compact latent representation, yielding substantially more efficient and 

effective representations than conventional techniques. For example, a 256 × 256 × 3 image 
can be reduced to just 32 discrete tokens, a significant reduction from the 256 or 1024 tokens 
obtained by prior methods. 

 
Autoregressive Image Generation without Vector Quantization (Google, Kaiming He) 
l Is it necessary for autoregressive models to be coupled with vector-quantized representations? 
l Vector-quantized tokenizers are difficult to train and are sensitive to gradient approximation 

strategies. Their reconstruction quality often falls short compared to continuous-valued 



counterparts. Our approach allows autoregressive models to enjoy the benefits of higher-
quality, non-quantized tokenizers. 

l Diffusion per token + autoregressive generation. 
l NOVA achieves state-of-the-art text-to-image and text-to-video generation performance with 

significantly lower training costs and higher inference speed. 
 
Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model (Meta) 
l We introduce Transfusion, a recipe for training a model that can seamlessly generate discrete 

and continuous modalities. 

 



l  

 
 
GAN in the era of diffusion 
 
StyleGAN-T- Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis 
(ICML23, NVIDIA) 
l Generative adversarial networks (GANs) only need a single forward pass -> fast. 
l GAN in smaller and less diverse datasets. 
l The key benefits of StyleGAN-T include its fast inference speed and smooth latent space 

interpolation in the context of text-to-image synthesis. 



l Modify the architecture! 
 
Scaling up GANs for Text-to-Image Synthesis (CVPR23, POSTECH) 
l The now-dominant paradigms, diffusion models and autoregressive models, both rely on 

iterative inference. 
l Can GANs continue to be scaled up and potentially benefit from such resources, or have they 

plateaued? What prevents them from further scaling, and can we overcome these barriers? 
 
The GAN is dead; long live the GAN! A Modern Baseline GAN (ICML24, Nick Huang) 
l We show that by introducing a new regularized training loss, GANs gain improved training 

stability. 
l Our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in 

common GANs with modern architectures. 
 
Diffusion Models 
 
Classifier-Free Diffusion Guidance (NIPS21, Google) 
l Classifier guidance combines the score estimate of a diffusion model with the gradient of an 

image classifier and thereby requires training an image classifier separate from the diffusion 
model. (Bayes) 

 
l Guidance can be indeed performed by a pure generative model without such a classifier. 

(Implicit bias) Classifier-free guidance instead mixes the score estimates of a conditional 
diffusion model and a jointly trained unconditional diffusion model. 

l When training: 
 

 
When sampling: 

  
 
Progressive Distillation for Fast Sampling of Diffusion Models (ICLR22, Google) 
l Diffusion suffers from slow sampling time: generating high quality samples takes many 

hundreds or thousands of model evaluations. 
l First, we present new parameterizations of diffusion models that provide increased stability 

when using few sampling steps. Second, we present a method to distill a trained deterministic 
diffusion sampler, using many steps, into a new diffusion model that takes half as many 
sampling steps. 



l  
l The error introduced by numerical integration of the probability flow ODE is guaranteed to 

vanish as the number of integration steps grows infinitely large. Here, we therefore propose a 
method to distill these accurate, but slow, ODE integrators into much faster models that are 
still very accurate. 

l Key difference: put one step into two steps and double the stepsize. 

 

 
Simple diffusion: End-to-end diffusion for high resolution images (ICML23, Google) 
l To improve denoising diffusion for high resolution images while keeping the model as simple 

as possible. 
l The noise schedule should be adjusted for high resolution images: we argue that for higher 

resolutions, this schedule can be changed in a predictable way to retain good visual sample 
quality. 

l In detail, we introduce a method to improve the resolution. We split a color block into 2*2, and 
adjust the noise (The lower resolution pixel z_t(64*64) only has half the amount of noise). 

 
 
On the Importance of Noise Scheduling for Diffusion Models (Google) 
l Empirically. 
l The noise scheduling is crucial for the performance, and the optimal one depends on the task 

(e.g., image sizes). 
l When increasing the image size, the optimal noise scheduling shifts towards a noisier one (due 

to increased redundancy in pixels) 
l Simply scaling the input data by a factor of b while keeping the noise schedule function fixed 

(equivalent to shifting the logSNR by log b) is a good strategy across image sizes. 
 
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise (NIPS23 Arpit Bansal) 
 (Nice Introduction! Read it carefully!) 
l Even when using completely deterministic degradations (e.g., blur, masking, and more), the 

training and test-time update rules that underlie diffusion models can be easily generalized to 
create generative models. 

l When we apply a sequence of updates at test time that alternate between the image restoration 
model and the image degradation operation, generative behavior emerges, and we obtain 



photo-realistic images. 
l Noise in the training process is critically thought to expand the support of the low-dimensional 

training distribution to a set of full measure in ambient space. 
l Also act as data augmentation to improve score predictions in low density regions. 
l Degradation: x_t = D(x_0, t). 
Restoration: R(x_t, t) \approx x_0 

Loss:  

l  
 
 
Diffusion is spectral autoregression (Sander Dieleman’s blog) 
l Autoregression does this by casting the data to be modelled into the shape of a sequence, and 

recursively predicting one sequence element at a time. Diffusion instead works by defining a 
corruption process that gradually destroys all structure in the data, and training a model to learn 
to invert this process step by step. 

l Underlying iterative approach. 
l Spectral analysis： 

l 



 
l Gradually filtering out more and more high-frequency information from the input image. This 

is a soft version of autoregression in frequency space, or if you want to make it sound 
fancier, approximate spectral autoregression. 

l For individual images, the spectrum will not be a perfectly straight line, and it will not typically 
be monotonically decreasing. 

l noise of the f. 

 
Going beyond images, one could use the same line of reasoning to try and understand why 
diffusion models haven’t really caught on in the domain of language modelling so far. The 

interpretation in terms of a frequency decomposition is not really applicable there, and hence 
being able to change the relative weighting of noise levels in the loss doesn’t quite have the same 

impact on the quality of generated outputs. 
l Unstable equilibrium, because the future is multimodal. 
l This flexibility also enables various distillation methods to reduce the number of steps required, 

and classifier-free guidance to improve sample quality. 
 
Generative Modelling With Inverse Heat Dissipation (ICLR23, Severi Rissanen) 
l We propose a new diffusion-like model that generates images through stochastically reversing 

the heat equation. 

https://sander.ai/2024/02/28/paradox.html
https://sander.ai/2023/08/28/geometry.html


l  
l We write the forward equation! 

 
And the solution is in the form: 

 
l Parameterize the reverse process!  
l Implicit bias: circularly symmetric and localized. 

 

 
Inversion by Direct Iteration- An Alternative to Denoising Diffusion for Image Restoration 
(TMLR23, Google)  
l Recovering a high-quality image from a low-quality observation is a fundamental problem in 

computer vision and computational imaging. 
l This evidently results in an image that is the (weighted) average of all plausible reconstructions. 

 

The solution is . 

l In this work, we explicitly address this problem by avoiding single-step prediction of the clean 
image, and instead iterating a series of inferences, where at each step we solve an ‘easier’ (i.e., 
less ill-posed) inverse problem than the original. 

l INDI:  predict the slightly less corrupted signal at time 
t - \delta. 

 
Structured Denoising Diffusion Models in Discrete State-Spaces (NIPS21, Google) 
l Diffusion models with discrete state spaces have been explored for text and image 

segmentation domains, but they have not yet been demonstrated as a competitive model class 



for large scale text or image generation. 
l The state space is a discrete space and we describe the distribution transition by a Markov 

chain.  
 
Let us Build Bridges: Understanding and Extending Diffusion Generative Models (Xingchao 
Liu) 

l  
l Constructing imputation mechanisms to generate latent trajectories that would have generated 

a given data point x(x-bridge) 2.	specifying and training the diffusion generative model to 
generate data on the domain Ω of interest by maximizing likelihood using the imputed 
trajectories(Ω-bridge) 

l Construction: Time-reversal and h-transform: 

 
Using time reversion formula: 

 

Consider the conditioned process  exists: 

 

l Mixtures: mixtures of bridges are bridges, which	 allows us to decouple the choice of 
initialization and dynamics in bridges. 

l Markov: , and  

 
l General construction: 

 

 
 



Safety (guest Junyan Zhu):  
1. Ground truth influence is unknown. 
2. Learn Attribution from Customized Models 
3.Contrastive Learning of exemplar and synthesized image (CLIP) 
 
Flow Matching 
Resource: T. Fjelde et al., Post on "An Introduction to Flow Matching" 
 
Flow Matching for Generative Modeling (ICLR23, Meta, Lipman) 
l FM: a simulation-free approach. Using OT. 

l  

Parameterize the vector field v_t. 
l However, we have no prior knowledge for what an appropriate p_t and u_t are. 

l  

 (q(x) is data distribution) 

 is a marginal vector field. 

Combine them together, we get an alternative loss function which is tractable: 

 
At last we give a parameterization of p_t and u_t: 

 

We have  and our loss function has the form: 

 
Additionally, the vector field can be constructed as: 



 Intuitively, particles under the OT displacement map always 

move in straight line trajectories and with constant speed. 
l Two weakness of CFM (conditional flow matching) integrate == expectation 

 

l Faster training (free of simulation) + sampling efficiency (ode>sde and OT performs better) + 
SOTA. 

 

 
Building Normalizing Flows with Stochastic Interpolants (ICLR23, Michael S. Albergo) 

l Interpolation perspective:  

 

Main results: (view the flow matching as an optimizing problem) 

 

Continuity equation:  



Therefore,

 

We introduce v_t:   
Observe that maximize G(v) equals to 

 

So we are going to find , which can give the solution . 
l (Related works): Schroedinger bridges, which are an entropic regularized version of the 

optimal transportation plan connecting two densities in finite time, using the framework of 
score-based diffusion. 

 
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow (ICLR23, 
Xingchao Liu) 
l Theoretical work! 
l Provide a unified solution to generative modeling and domain transfer, among various other 

tasks involving distribution transport. 
l The idea of rectified flow is to learn the ODE to follow the straight paths connecting the points 

drawn from π0 and π1 as much as possible. 

l  
It prefers a straight line flows yield fast simulation (can be exactly simulated without time 
discretization). 
non-crossing property – causal. 

 

 
l Read the relation work carefully!!! P18-P22 



 
Discrete Flow Matching (Meta AI, FAIR) 
l For language. Experiments on language modeling: 
Small model beat baseline, large model beat AR. 
Task: Conditional text generation & Code generation. 

 
 
Flow Matching Guide and Code (Meta) (Need to read!) 
 

Applications 
 
Videos 
 
Lumiere: A Space-Time Diffusion Model for Video Generation (Google, Weizmann Institute) 
l Space-Time U-Net: process all the frames at once to learn the uniform motion. 
l Diffusion models can learn a conditional distribution by incorporating additional guiding 

signals, such as text embedding, or spatial conditioning (e.g., depth map). 

 



 
 
Genie: Generative Interactive Environments (Google) 
l The first generative interactive environment trained in an unsupervised manner from 

unlabelled Internet videos. Data: Video. 
l Model: latent action model + video tokenizer + dynamics model 

 

 
 
Movie Gen: A Cast of Media Foundation Models (Meta) (Need to read: How to convince others 
this architecture is useful?) 
l Movie Gen: a cast of foundation models that generates high-quality, 1080p HD videos with 

different aspect ratios and synchronized audio. 
l Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video 

personalization, video editing, video-to-audio generation, and text-to-audio generation. 
 
3D and Geometry 
 
DreamFusion: Text-to-3D using 2D Diffusion (ICLR 23, Google) 



l Adapting diffusion to 3D synthesis would require large-scale datasets of labeled 3D data and 
efficient architectures for denoising 3D data, neither of which currently exist. 

l In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion 
model to perform text-to-3D synthesis. 

l Technique: Score Distillation Sampling approach + NeRF-like rendering engine. 
Score Distillation Sampling approach: (we instead want to create 3D models that look like good 
images when rendered from random angles instead of pixels) 
The diffusion gradient: 

 

Simplify: 

 
We can write the loss as: 

 
NeRF-like rendering engine: a volumetric raytracer is combined with a neural mapping from spatial 
coordinates to color and volumetric density 
 
LRM: Large Reconstruction Model for Single Image to 3D (Adobe) 
l In light of this, we pose the same question for 3D: given sufficient 3D data and a large-scale 

training framework, is it possible to learn a generic 3D prior for reconstructing an object from 
a single image? 

l Transformer. 
 
Robotics 
 
Planning with Diffusion for Flexible Behavior Synthesis (ICML22) 
l However, learned models are often poorly suited to the types of planning algorithms designed 

with ground-truth models in mind, leading to planners that exploit learned models by finding 
adversarial examples. 

l Target:  

l Trajectory:  

l Diffusion model:  

l where h(t) contains prior information. 



l Merits: 1.Long-horizon 2.Task combination (adapt to new reward function). 
 
Material Science 
 
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018) 
l The key challenge of drug discovery is to find target molecules with desired chemical 

properties. 
l We decompose the challenge into two complementary subtasks: learning to represent 

molecules in a continuous manner that facilitates the prediction and optimization of their 
properties (encoding); and learning to map an optimized continuous representation back into 
a molecular graph with improved properties (decoding). – latent representation 

l SMILES strings (1988). Drawbacks: First, the SMILES representation is not designed to 
capture molecular similarity. Second, essential chemical properties such as molecule validity 
are easier to express on graphs rather than linear SMILES representations. 

 
l Node: a chemical structure, tree: potential structure, score: the probability of this structure. 
 
Equivariant Diffusion for Molecule Generation in 3D (ICML22) 
l Our E(3) Equivariant Diffusion Model (EDM) learns to denoise a diffusion process with an 

equivariant network that jointly operates on both continuous (atom coordinates) and 
categorical features (atom types). 

 
Uni-Mol: A Universal 3D Molecular Representation Learning Framework (ICLR 2023) 
l In most MRL methods, molecules are treated as 1D sequential tokens or 2D topology graphs, 

limiting their ability to incorporate 3D information for downstream tasks and, in particular, 
making it almost impossible for 3D geometry prediction/generation. 

 
Protein and Biology 



Accurate structure prediction of biomolecular interactions with AlphaFold 3 (Nature) 
l Inference: 

 
 

More papers are coming! 

Dimension-free Score Matching and Time Bootstrapping for Diffusion Models  

l Establish the first (nearly) dimension-free sample complexity bounds for learning these score 
functions. (log-log-d bound) 

l Key idea: martingale-based error decomposition + variance bound. 
l BSM (Bootstrapped Score Matching): a variance reduction technique. 

l  represents a regression task with noisy labels. 

 is what we need 
to bound. 

l Define the martingale like 

 



Calculate the variance and derive concentration inequality. 
 
Remark: I think there’s some typo, and no insight for the result. (Maybe variance reduction) 
 
Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion  
History-guided Video Diffusion. Thousand frames video era comes! 
Noise level – mask mechanism. 

 
 
Simple and Effective Masked Diffusion Language Models 
l Diffusion + AR 
l Mask mechanism 

 

 
How Much Is A Noisy Image Worth? Data Scaling Laws For Ambient Diffusion 
l Ambient Diffusion and related frameworks train diffusion models with solely corrupted data 

(which are usually cheaper to acquire) but ambient models significantly underperform 
models trained on clean data. 

l Some ideas: Noise is all you need. 
l If the data’s noise is larger than the t-level noise, than we don’t learn it. 



 

l  


