Generative model paper discussion (By Alex)

Theory

Deep Image Prior (CVPRI18, Dmitry Ulyanov)

® Inductive bias: a great deal of image statistics are captured by the structure of a convolutional
image generator independent of learning.

® We now show that, while indeed almost any image can be fitted, the choice of network
architecture has a major effect on how the solution space is searched by methods such as
gradient descent.

®  The parametrization offers high impedance to noise and low impedance to signal.

®  Application: 1.Denoising and generic reconstruction 2.Super-resolution 3.Inpainting 4.Natural
pre-image 5.Flash-no flash reconstruction

Flow based model

Variational Inference with Normalizing Flows (ICML15, Google, Shakir Mohamed)
®  We study deep latent Gaussian models (DLGM), which are a general class of deep directed
graphical models that consist of a hierarchy of L layers of Gaussian latent variables z 1 for
layer 1.
p(x,21,...,21) = p(x|fo(z1)) [ [ p (| fi(z141)) @)

=1

2~ N(zlp,0?) & z=p+0e, e~N(0,1)

® Reparameterization and Montecarlo

VsEq,(2)[f6(2)] € En(ejo,1)[Vofo(n + oe€)] .

® [t is natural to consider the case in which the length of the normalizing flow tends to infinity.

zx = fx o...0 fao fi(2zo) (6)
K Ofs
Ingx(zx) zlnqo(ZO)—Zlndetla , (D
From k=1 into:

dz(t) = F(z(t), t)dt + G(a(t),1)d€(t),  (9)

Glow: Generative Flow with Invertible 1x1 Convolutions (NIPS18, OpenAl, Google Al)

® Two major unsolved problems in the field of machine learning are (1) data-efficiency: the
ability to learn from few datapoints, like humans; and (2) generalization: robustness to changes
of the task or its context.

® A promise of generative models, a major branch of machine learning, is to overcome these

limitations by: (1) learning realistic world models, potentially allowing agents to plan in a



world model before actual interaction with the world, and (2) learning meaningful features of

the input while requiring little or no human supervision or labeling. Since such features can

be learned from large unlabeled datasets and are not necessarily task-specific, downstream

solutions based on those features could potentially be more robust and more data efficient.

®  Merits: (1) Exact latent-variable inference and log-likelihood evaluation(not a lower bound)
(2) Efficient (parallelize) (3) Useful latent space for downstream tasks: beat GANs and CNNs

(4) Memory savings

® How is 1*1 convolution kernel working: it changes the depth of the data.

step of flow x K
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actnorm

(a) One step of our flow.

(b) Multi-scale architecture (Dinh et al., 2016).

Description

Function

Reverse Function

| Log-determinant

Actnorm.
See Section 3.1,

Vi, Yij =8OX; +b

Vi,j : xi; = (yi,; —b)/s

h - w - sum(log |s|)

Invertible 1 x 1 convolution.
W :[eX .
See Section 3.2.

V'i,j . Y’i,j = Wxi,j

Vi,j X5 = W_lyi’j

h-w - log|det(W)|
or

h - w - sum(log |s|)
(see eq. (10)

Affine coupling layer.
See Section|3.3/and
(Dinh et al., 2014)

Xa,Xp = split(x)
(logs,t) = NN(x3)
s = exp(logs)

Ya =850Xq +t

Yb = Xp

y = concat(ya, ys)

Ya,¥b = split(y)
(logs, t) = NN(ys)
s = exp(log s)

Xa = (Yo —t)/s
Xp =Yb

x = concat(Xq,Xp)

sum(log([s|))

Invertible Residual Networks (ICML19)

®  One of the main appeals of neural network-based models is that a single model architecture

can often be used to solve a variety of related tasks. Generative tasks — flow, discriminative

learning — deep residual.

Autoregressive model

Pixel Recurrent Neural Networks (ICML16, Google)

® Recurrent Neural Networks (RNN) are powerful models that offer a compact, shared

parametrization of a series of conditional distributions.

®  Autoregressive model.



Improved Variational Inference with Inverse Autoregressive Flow (NIPS16, OpenAl)
®  Scales well to high-dimensional latent spaces.

Approximate Posterior with Inverse Autoregressive Flow (IAF)

Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation (ICLR24, Google,

CMU)

®  One crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens
appropriate for LLM learning.

® Why do language models lag behind diffusion models in visual generation? This paper
suggests that a primary reason is the lack of a good visual representation, resembling our
natural language system, for effectively modeling the visual world.

®  Merits: (1) Compatibility with LLMs (2) Compressed representation (3) Visual understanding
benefits.

® The first evidence suggesting that a language model can outperform diffusion models on

ImageNet when provided with the same training data, an equivalent model size, and a similar

training budget.

T w/o guidance  w/ guidance

ype Method FID| IS FID| ISt #Params #Steps
GAN StyleGAN-XL (Sauer et al., 2022) 241 267.8 168M 1
Diff. + VAE* DiT-XL/2 (Peebles & Xie, 2022) 12.03 105.3 3.04 240.8 675M 250
Diffusion ADM-+Upsample (Dhariwal & Nichol, 2021) 996 121.8 3.85 221.7 731M 2000
Diffusion RIN (Jabri et al., 2023) 395 2160 320M 1000
Diffusion simple diffusion (Hoogeboom et al., 2023)  3.54 2053 3.02 248.7 2B 512
Diffusion VDM++ (Kingma & Gao, 2023) 299 2322 2.65 278.1 2B 512
MLM + VQ MaskGIT (Chang etal., 2022) ~ =~ 732 1560 ~~~~~~ ~227M 12~
MLM + VQ DPC+Upsample (Lezama et al., 2023) 3.62 2494 619M 72
MLM + LEQ MAGVIT-v2 (this paper) ‘3"8; gg‘l‘ Lo1 343 30M éﬁ
Type Method K600 FVD| UCF FVD| #Params #Steps
GAN TrIVD-GAN-FP (Luc et al., 2020) 25.7+0.7 1
Diffusion Video Diffusion (Ho et al., 2022¢) 16.2+0.3 1.1B 256
Diffusion _ _RIN (Jabrietal,,2023) | 108 ________A4AlIM 1000
AR-LM + VQ TATS (Ge et al., 2022) 332+18 32IM 1024
MLM + VQ  Phenaki (Villegas et al., 2022) 36.4+0.2 227TM 48
MLM + VQ MAGVIT (Yu et al., 2023a) 9.9+0.3 76+2 306M 12
MLM + LFQ non-causal baseline 11.6+0.6 307TM 12

. 52402 12

MLM + LFQ MAGVIT-v2 (this paper) 43401 583 307TM 24

Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction (Keyu
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Studies into the success of these large AR models have highlighted their scalability and
generalizabilty: the former, as exemplified by scaling laws, allows us to predict large model’s
performance from smaller ones and thus guides better resource allocation, while the latter, as
evidenced by zero-shot and few-shot learning, underscores the unsupervised-trained models’
adaptability to diverse, unseen tasks. These properties reveal AR models’ potential in learning
from vast unlabeled data, encapsulating the essence of “AGI”.

Three Different Autoregressive
Generative Models
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An Image is Worth 32 Tokens for Reconstruction and Generation (ByteDance)

Translating raw pixels into a latent space.

TiTok provides a more compact latent representation, yielding substantially more efficient and
effective representations than conventional techniques. For example, a 256 x 256 x 3 image
can be reduced to just 32 discrete tokens, a significant reduction from the 256 or 1024 tokens
obtained by prior methods.

Autoregressive Image Generation without Vector Quantization (Google, Kaiming He)

Is it necessary for autoregressive models to be coupled with vector-quantized representations?

®  Vector-quantized tokenizers are difficult to train and are sensitive to gradient approximation

strategies. Their reconstruction quality often falls short compared to continuous-valued



counterparts. Our approach allows autoregressive models to enjoy the benefits of higher-
quality, non-quantized tokenizers.

® Diffusion per token + autoregressive generation.

® NOVA achieves state-of-the-art text-to-image and text-to-video generation performance with

significantly lower training costs and higher inference speed.

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model (Meta)
®  We introduce Transfusion, a recipe for training a model that can seamlessly generate discrete

and continuous modalities.

|cute“ cat ” . “<BOI>| ' . % - |What||color|| is H its “nose” ? |
TTTTTiiTTTTTTT

Transformer
rrrr ottt
A cute cat . <BOI> l . E{ i" <EOI> What color is its nose

Figure 1: A high-level illustration of Transfusion. A single transformer perceives, processes, and
produces data of every modality. Discrete (text) tokens are processed autoregressively and trained on
the next token prediction objective. Continuous (image) vectors are processed together in parallel
and trained on the diffusion objective. Marker BOI and EOI tokens separate the modalities.
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Figure 5: Performance of Transfusion and Chameleon models at different scales, controlled for
° parameters, data, and compute. All axes are logarithmic.
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GAN in the era of diffusion

StyleGAN-T- Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis

(ICML23, NVIDIA)

®  Generative adversarial networks (GANs) only need a single forward pass -> fast.

®  GAN in smaller and less diverse datasets.

® The key benefits of StyleGAN-T include its fast inference speed and smooth latent space
interpolation in the context of text-to-image synthesis.



®  Modify the architecture!

Scaling up GANs for Text-to-Image Synthesis (CVPR23, POSTECH)

® The now-dominant paradigms, diffusion models and autoregressive models, both rely on
iterative inference.

® Can GANSs continue to be scaled up and potentially benefit from such resources, or have they
plateaued? What prevents them from further scaling, and can we overcome these barriers?

The GAN is dead; long live the GAN! A Modern Baseline GAN (ICML24, Nick Huang)

®  We show that by introducing a new regularized training loss, GANs gain improved training
stability.

®  Our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in
common GANs with modern architectures.

Diffusion Models

Classifier-Free Diffusion Guidance (NIPS21, Google)
® (lassifier guidance combines the score estimate of a diffusion model with the gradient of an
image classifier and thereby requires training an image classifier separate from the diffusion

model. (Bayes)

can train a classifier Pg(y|x¢, t) on noisy images x, and then {ise gradients Ve, log}o¢(y|xt, t) to
guide the diffusion sampling process towards an arbitrary class label y.

® Guidance can be indeed performed by a pure generative model without such a classifier.
(Implicit bias) Classifier-free guidance instead mixes the score estimates of a conditional
diffusion model and a jointly trained unconditional diffusion model.

®  When training:

¢ + @ with prdbability Puncond > Randomly discard conditioning to train unconditionally
When sampling:

€ = (1 + w)ep(z¢, c) — weg(z4)

> Sampling step (could be replaced by another sampler, e.g. DDIM)

Progressive Distillation for Fast Sampling of Diffusion Models (ICLR22, Google)

® Diffusion suffers from slow sampling time: generating high quality samples takes many
hundreds or thousands of model evaluations.

® First, we present new parameterizations of diffusion models that provide increased stability
when using few sampling steps. Second, we present a method to distill a trained deterministic
diffusion sampler, using many steps, into a new diffusion model that takes half as many

sampling steps.



R 1 1 R
Lo = le - éo(o)|l2 = Ha_t(zt - ) — (a0~ auke(a)

Alternatively, Song et al. (2021c) show that our denoising model X4 (z:) can be used to determinis-
tically map noise z; ~ N(0,I) to samples x by numerically solving the probability flow ODE:

o = [f(a,1) — L6*(0)V. logo(a)]d, ©

where V. log py(2;) = % Following Kingma et al. (2021), we have f(z;,t) = 4187,

t

2
and ¢2(t) = % - 2%%03. Since %4(z;) is parameterized by a neural network, this equation

is a special case of a neural ODE (Chen et al., 2018), also called a continuous normalizing flow
(Grathwohl et al., 2018).

The error introduced by numerical integration of the probability flow ODE is guaranteed to
vanish as the number of integration steps grows infinitely large. Here, we therefore propose a
method to distill these accurate, but slow, ODE integrators into much faster models that are
still very accurate.

Key difference: put one step into two steps and double the stepsize.

2 2

= 2 Jx - %o(2)I,
2 t

Simple diffusion: End-to-end diffusion for high resolution images (ICML23, Google)

To improve denoising diffusion for high resolution images while keeping the model as simple
as possible.

The noise schedule should be adjusted for high resolution images: we argue that for higher
resolutions, this schedule can be changed in a predictable way to retain good visual sample
quality.

In detail, we introduce a method to improve the resolution. We split a color block into 2*2, and
adjust the noise (The lower resolution pixel z_t(64*64) only has half the amount of noise).

204%64 — (z,gl) + zt(2) + zt(B) + zt(4))/4.

On the Importance of Noise Scheduling for Diffusion Models (Google)

Empirically.

The noise scheduling is crucial for the performance, and the optimal one depends on the task
(e.g., image sizes).

When increasing the image size, the optimal noise scheduling shifts towards a noisier one (due
to increased redundancy in pixels)

Simply scaling the input data by a factor of b while keeping the noise schedule function fixed

(equivalent to shifting the logSNR by log b) is a good strategy across image sizes.

Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise (NIPS23 Arpit Bansal)
(Nice Introduction! Read it carefully!)

Even when using completely deterministic degradations (e.g., blur, masking, and more), the
training and test-time update rules that underlie diffusion models can be easily generalized to
create generative models.

When we apply a sequence of updates at test time that alternate between the image restoration

model and the image degradation operation, generative behavior emerges, and we obtain



photo-realistic images.

® Noise in the training process is critically thought to expand the support of the low-dimensional
training distribution to a set of full measure in ambient space.

® Also act as data augmentation to improve score predictions in low density regions.

® Degradation: x t=D(x 0, t).

Restoration: R(x_t, t) \approx x_0

HgnEx~X|lR9(D(wa t)v t) - .’13”,

Loss:

Algorithm 1 Naive Sampling
Input: A degraded sample z;
fors=t,t—1,...,1do

%o + R(zs, )

Ts_1 = D(io,s — ].)
end for
Return: z

Algorithm 2 Improved Sampling for Cold Diffusion
Input: A degraded sample z;
fors=t¢,t—1,...,1do

%o < R(zs,s)
LTg—_1=Ts — D(i’o, 8) + D(.’f)o, s — 1)
end for

Diffusion is spectral autoregression (Sander Dieleman’s blog)
®  Autoregression does this by casting the data to be modelled into the shape of a sequence, and
recursively predicting one sequence element at a time. Diffusion instead works by defining a

corruption process that gradually destroys all structure in the data, and training a model to learn

to invert this process step by step.

Underlying iterative approach.
®  Spectral analysis:

natural image Gaussian noise noisy image very noisy image
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Figure 4: The 1/ f power spectral density in
natural images induces an implicit coarse-to-
fine inductive bias in diffusion models.

®  Gradually filtering out more and more high-frequency information from the input image. This
is a soft version of autoregression in frequency space, or if you want to make it sound
fancier, approximate spectral autoregression.

® Forindividual images, the spectrum will not be a perfectly straight line, and it will not typically

be monotonically decreasing.

Rla(t)xo](f) > 7 - Rlo(t)e](f)-

() noise of the f.

Going beyond images, one could use the same line of reasoning to try and understand why
diffusion models haven t really caught on in the domain of language modelling so far. The
interpretation in terms of a frequency decomposition is not really applicable there, and hence
being able to change the relative weighting of noise levels in the loss doesn t quite have the same
impact on the quality of generated outputs.

®  Unstable equilibrium, because the future is multimodal.
® This flexibility also enables various distillation methods to reduce the number of steps required,

and classifier-free guidance to improve sample quality.

Generative Modelling With Inverse Heat Dissipation (ICLR23, Severi Rissanen)
®  We propose a new diffusion-like model that generates images through stochastically reversing

the heat equation.


https://sander.ai/2024/02/28/paradox.html
https://sander.ai/2023/08/28/geometry.html

Standard diffusion model Inverse heat dissipation model

Non-invertible forward process Non-invertible forward process
 — R —  —
= S VLY W

Generative reverse process Generative reverse process

Figure 2: Comparison of generation by generative denoising and inverse heat diffusion, where the
e [focus of the forward process is in the pixel space in the left and the 2D image plane on the right.

®  We write the forward equation!

0
Forward PDE model: &u(x’ y,t) = Au(z,y,t),

And the solution is in the form:

The PDE model in Eq. (1) can be formally written in evolution equation form as u(zyy;t) =

F(t) u(z,y,t)|t=t,, where F(t) = exp[(t — to) A] is an evolution operator given in terms of the

operator exponential function (see, e.g., Da Prato & Zabczyk, 1992). We can use this general
® Parameterize the reverse process!

® [mplicit bias: circularly symmetric and localized.

0 1 0
u(z,y,t —dt) = u(z,y,t) — (1 -4 1] *u(z,y,t)dt.
0 1 O

Inversion by Direct Iteration- An Alternative to Denoising Diffusion for Image Restoration

(TMLR23, Google)

® Recovering a high-quality image from a low-quality observation is a fundamental problem in
computer vision and computational imaging.

® This evidently results in an image that is the (weighted) average of all plausible reconstructions.

min Bz y | Fo(y) — @llp ~ min ) || Fo(y’) — @'[|p.

zmuvse(y) = E[z|y] = [zp(z | y)de.

The solution is

® In this work, we explicitly address this problem by avoiding single-step prediction of the clean
image, and instead iterating a series of inferences, where at each step we solve an ‘easier’ (i.e.,
less ill-posed) inverse problem than the original.
By_5 = %Fo(:i:t,t) + (1 - g) &,
® INDIL
t - \delta.

predict the slightly less corrupted signal at time

Structured Denoising Diffusion Models in Discrete State-Spaces (NIPS21, Google)
® Diffusion models with discrete state spaces have been explored for text and image
segmentation domains, but they have not yet been demonstrated as a competitive model class



for large scale text or image generation.
® The state space is a discrete space and we describe the distribution transition by a Markov

chain.

Let us Build Bridges: Understanding and Extending Diffusion Generative Models (Xingchao
Liu)

Time t

Figure 1: Q-Bridges for dis-
crete Q = {1,2,3,4}.

®  Constructing imputation mechanisms to generate latent trajectories that would have generated
a given data point x(x-bridge) 2. specifying and training the diffusion generative model to
generate data on the domain Q of interest by maximizing likelihood using the imputed
trajectories((2-bridge)

® Construction: Time-reversal and h-transform:
dZF = {§(Z5, T — t)dt + o(Z8, T — t)dW,,  Z% ==,
Using time reversion formula:

V.(0%(Z¢,t)qF (ZF))
@t (Z¢)

Q°() =Q( | Zr =)

4z = (—ﬁ(Zt"’,t) + ) dt + o (Z7, t)dW;, Zy ~ Qg

Consider the conditioned process exists:

ng = (b(tha t) + Uz(Ztma t)vz 10g QT|t('r | Ziz)) dt + U(tha t)dVVty ZO ~ QO|T(' | :E), (10)

® Mixtures: mixtures of bridges are bridges, which allows us to decouple the choice of

initialization and dynamics in bridges.

° Markov:Let QH*() = f Qw(')H*(dx),and

Proposition 3.4. Take Q° to be the dynamics in (11) initialized from Zy ~ N(0,vo). Assume ¢z > 0,
Vt € [0,T). Then Q" is Markov only when vy = 0, or vy = +oo.

®  General construction:

In the first step, for any Q following dZ; = b(Z;,t)dt + o(Z;,t)dW4, the h-transform method shows that
the conditioned process Q% := Q(- | Z7 € Q) follows dZ; = n*(Z;, t)dt + o(Z;,t)dW; with

(2 1) = b(z,t) + 022 DBantry . o[V log arp(@ | 2)],  Zo~ Q- | Xr € 9).

In the second step, given an Q-bridge Q%, we construct a parametric model P? by adding a learnable neural
network f? in the drift and (optionally) starting from a learnable initial distribution ./

P’ dZ; = (0(Z4, ) f0(Z, t) + (24, t))dt + 0(Z, t)dWy,  Zo ~ Y. (12)



Safety (guest Junyan Zhu):
1. Ground truth influence is unknown.
2. Learn Attribution from Customized Models

3.Contrastive Learning of exemplar and synthesized image (CLIP)

Flow Matching
Resource: T. Fjelde et al., Post on "An Introduction to Flow Matching"

Flow Matching for Generative Modeling (ICLR23, Meta, Lipman)
® FM: a simulation-free approach. Using OT.

Given a target probability density path p;(z) and a corresponding vector field u;(x), which generates
p+(x), we define the Flow Matching (FM) objective as

° Len(0) = By p, ) lv:(2) — (@))%, S

Parameterize the vector field v_t.
® However, we have no prior knowledge for what an appropriate p_t and u_t are.

pi(z) = / pr(ale1)g(1)day,

Pi(@) /pl (zle1)q(@r)dzs ~ q(x) (q(x) is data distribution)

Ut(l') — /ut(m|x1)pt(x|x1)Q(xl)d:vl,
pt(z) is a marginal vector field.
Combine them together, we get an alternative loss function which is tractable:
2
Leru(0) = Bt (1) pi(alan) |[01(@) — wi(alen)||,

At last we give a parameterization of p_tand u_t:

pe(zlz1) = N(z | pe(21), 04 (21)*1)

¥i(2) = 04(z1)z + pe(21)-

We have and our loss function has the form:

(o) — (a0

Additionally, the vector field can be constructed as:

‘CCFM(e) = Et,q(zl),P(IO)

Theorem 3. Let p;(x|z1) be a Gaussian probability path as in equation 10, and 1), its corresponding
flow map as in equation 11. Then, the unique vector field that defines 1) has the form:

oy(x1)
ot(ml)

Consequently, u(x|z1) generates the Gaussian path p(z|z1).

uy(zlz1) = (@ — pue(21)) + pi(22)- (15)
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Diffusion oT

Figure 3: Diffusion and OT
trajectories.

Intuitively, particles under the OT displacement map always

move in straight line trajectories and with constant speed.

® Two weakness of CFM (conditional flow matching) integrate == expectation

1. Non-straight marginal paths = ODE hard to integrate = slow sampling at inference.

2. Many possible Z1 for a noised £t = high CFM loss variance = slow training convergence.

®  Faster training (free of simulation) + sampling efficiency (ode>sde and OT performs better) +

SOTA.
Catalog of one-step generative models
* VAEs * Normalizing flows
» Stable training (maximum likelihood) » Stable training (maximum likelihood)
» Tractable likelihood estimation » Exact likelihood computation
* Low sample quality * Restricted model architecture
* GANs * Low sample quality
* Unstable training (adversarial + Consistency models
games) « Stable training (pseudo-objective)
* High sample quality + High sample quality
* No likelihoods « No likelihoods

¢ Moderate architecture constraints.

Building Normalizing Flows with Stochastic Interpolants (ICLR23, Michael S. Albergo)

® Interpolation perspective: Oupr +V - (vepr) =0 with pi=o = po and pi=1 = p1,

zy = Ii(zo, 1), o~ po, 1~ pp independent.
Main results: (view the flow matching as an optimizing problem)

Proposition 1. The stochastic interpolant x, defined in (6) with I;(zq,x1) satisfying (4) has a
probability density p:(x) that satisfies the continuity equation (3) with a velocity vi(x) which is the

unique minimizer over 0;(z) of the objective

G(9) = E [|6¢(Is(z0, 21))|* — 20:1:(z0, 21) - D(I1(z0, 21))] )

In addition the minimum value of this objective is given by

1
G(v) = —E[[v(Ii(zo, 21))?] = — /0 /R (&) Ppu(a)dads > —oo (10)

pe(z) = / § (z — It(z0,21)) po(To)p1(z1)dTod: .
Continuity equation: R4 xR?



Therefore,
Oips(x) = —/ 0iIt(z0,21) - VO (x — It(x0, 1)) po(wo)p1(z1)dzodrs = =V - ji(x) (13)
R4 xR4

where we defined the probability current

]t(l‘) = / atIt(-T(),xl)(s (.’E — It(l‘o,xl)) po(x())pl(xl)dl‘(]d$1- (14)
R4 x R4
Je()/pe () if pi(z) >0,
vi(z) = 0 |
We introduce v_t: else

Observe that maximize G(v) equals to

1
min / / (60 (2) |20 () dardt
0 R4

(,0)

subject to:  Oypy + V - ('Dtﬁt) =0, pi=0=po, Pt=1=p1.

) mgi,xm}nG(v) ) ) ) iL‘I = IZ‘(IEo,IEl)
So we are going to find T v , which can give the solution. “ . . PN .

® (Related works): Schroedinger bridges, which are an entropic regularized version of the
optimal transportation plan connecting two densities in finite time, using the framework of

score-based diffusion.

Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow (ICLR23,

Xingchao Liu)

®  Theoretical work!

® Provide a unified solution to generative modeling and domain transfer, among various other
tasks involving distribution transport.

®  The idea of rectified flow is to learn the ODE to follow the straight paths connecting the points

drawn from 70 and 1 as much as possible.

Algorithm 1 Rectified Flow: Main Algorithm
Procedure: Z = RectFlow((Xo, X1)):
Inputs: Draws from a coupling (X, X1) of o and 1 ; velocity model vg: R? — R? with parameter 6.

Training: § = arg min E [||X1 — Xo —v(tX1 + (1 — )Xo, t)||*| , with ¢ ~ Uniform([0, 1]).
0

Sampling: Draw (Zy, Z1) following dZ; = v4(Z, t)dt starting from Zo ~ mo (or backwardly Z; ~ my).
Return: Z = {Z;: t € [0,1]}.

Reflow (optional): Z**! = RectFlow((Z§, Z})), starting from (Z3, Z?) = (Xo, X1).

Distill (optional): Learn a neural network 7" to distill the k-rectified flow, such that VAZS T (ZF).

It prefers a straight line flows yield fast simulation (can be exactly simulated without time
discretization).

non-crossing property — causal.

Marginal preserving property [Theorem 3.3] The pair (Zy, Z1) is a coupling of my and 1. In fact, the
marginal law of Z; equals that of X; at every time t, that is, Law(Z;) = Law(X), Vt € [0, 1].

Reducing transport costs [Theorem 3.5] The coupling (Zy, Z1) yields lower or equal convex transport
costs than the input (Xo, X1) in that E[c(Z1 — Zy)] < E[c(X1 — Xo)] for any convex cost c: R — R.

® Read the relation work carefully!!! P18-P22



Discrete Flow Matching (Meta Al, FAIR)

®  For language. Experiments on language modeling:
Small model beat baseline, large model beat AR.

Task: Conditional text generation & Code generation.

M HuMANEVALT MBPP (1-sHOT)?
ETHOD Data
Pass@l Pass@Ql0 Pass@25 Pass@l Pass@l0 Pass@25
Autoregressive Text 1.2 3.1 4.8 0.2 1.7 3.3
Code 14.3 21.3 27.8 17.0 34.3 44.1
FM Text 1.2 2.6 4.0 0.4 1.1 3.6
Code 6.7 13.4 18.0 6.7 20.6 26.5
FM (Oracle length) Code 11.6 18.3 20.6 13.1 28.4 34.2

Table 4 Execution based code generation evaluation.

Flow Matching Guide and Code (Meta) (Need to read!)

Applications

Videos

Lumiere: A Space-Time Diffusion Model for Video Generation (Google, Weizmann Institute)

®  Space-Time U-Net: process all the frames at once to learn the uniform motion.

® Diffusion models can learn a conditional distribution by incorporating additional guiding
signals, such as text embedding, or spatial conditioning (e.g., depth map).

(a) Space-Time UNet (STUNet) (b) Convolution-based Inflation Block
—lD Convolution

@

Legend:

@@ Spatial Resizing
@®@) Tempora Ressing Lo ¥, @@ _ ®F

-~ = Skip Connection
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(c) Attention-based Inflation Block

Pretrained Spatial Layer(s)

@

O Conv-based Inflation T x H x w xD
O Attention-based Inflation




(a) Common Approach with TSR model(s) (b) Our Approach
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Genie: Generative Interactive Environments (Google)
® The first generative interactive environment trained in an unsupervised manner from
unlabelled Internet videos. Data: Video.

®  Model: latent action model + video tokenizer + dynamics model
Video tokens 2

Video .
tokenizer

Latent actions @ e

Figure 3 | Genie model training: Genie takes in T frames of video as input, tokenizes them into
discrete tokens z via the video tokenizer, and infers the latent actions @ between each frame with the
latent action model. Both are then passed to the dynamics model to generate predictions for the next
frames in an iterative manner.

Dynamics Model The dynamics model is a
decoder-only MaskGIT (Chang et al., 2022) trans-
former (Figure 7). At each time step t € [1,T], it
takes in the tokenized video z;.._; and stopgrad
latent actions d;..—; and predicts the next frame
tokens z,. We again utilize an ST-transformer,

Movie Gen: A Cast of Media Foundation Models (Meta) (Need to read: How to convince others

this architecture is useful?)

® Movie Gen: a cast of foundation models that generates high-quality, 1080p HD videos with
different aspect ratios and synchronized audio.

® Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video

personalization, video editing, video-to-audio generation, and text-to-audio generation.

3D and Geometry

DreamFusion: Text-to-3D using 2D Diffusion (ICLR 23, Google)



®  Adapting diffusion to 3D synthesis would require large-scale datasets of labeled 3D data and
efficient architectures for denoising 3D data, neither of which currently exist.

® [n this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion
model to perform text-to-3D synthesis.

®  Technique: Score Distillation Sampling approach + NeRF-like rendering engine.

Score Distillation Sampling approach: (we instead want to create 3D models that look like good

images when rendered from random angles instead of pixels)

The diffusion gradient:

A 0éy(2zs;y,t B
VoLpi($,x = g(0)) = By, |w(t) (é4(2e;9,) —€) 0€y(2¢;y, t) X

Z¢ 80
N ~~ o N\ ~~ > v
Noise Residual U-Net Jacobian Generator Jacobian

Simplify:

vGL:SDS (¢7 X = g(0)) = ]Et,e w(t) (€¢(Zt; Y, t) — e) g—;{

We can write the loss as:

VoLsps(¢,x = g(0)) = VoEs [0¢/cyw(t)KL(q(z¢|g(0); y, ) || P (245 9, 1))] -

NeRF-like rendering engine: a volumetric raytracer is combined with a neural mapping from spatial

coordinates to color and volumetric density

LRM: Large Reconstruction Model for Single Image to 3D (Adobe)

® In light of this, we pose the same question for 3D: given sufficient 3D data and a large-scale
training framework, is it possible to learn a generic 3D prior for reconstructing an object from
a single image?

®  Transformer.
Robotics

Planning with Diffusion for Flexible Behavior Synthesis (ICML22)
® However, learned models are often poorly suited to the types of planning algorithms designed
with ground-truth models in mind, leading to planners that exploit learned models by finding

adversarial examples.

T
a'S:T = argmax \7(503 aO:T) = argmax Z T(Sty at)
®  Target: aor C—
() Trajectory: T = (50;307817a17" '7STaaT)

N
po(r) = [ o) [o(ri | 7)™

® Diffusion model:

D h(T).
Bo(T) o< po(T)M(T) where h(t) contains prior information.



®  Merits: 1.Long-horizon 2.Task combination (adapt to new reward function).
Material Science

Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

® The key challenge of drug discovery is to find target molecules with desired chemical
properties.

® We decompose the challenge into two complementary subtasks: learning to represent
molecules in a continuous manner that facilitates the prediction and optimization of their
properties (encoding); and learning to map an optimized continuous representation back into
a molecular graph with improved properties (decoding). — latent representation

® SMILES strings (1988). Drawbacks: First, the SMILES representation is not designed to
capture molecular similarity. Second, essential chemical properties such as molecule validity

are easier to express on graphs rather than linear SMILES representations.

Molecule 9 Tree decomposition
S / S
O — A
/"/ \ /J
<‘ L Clusters
“ \— —
Molecular Junction
Tree T |
Ci
o Ny
C;
Encode l (Sec 2.2) Encode l (Sec 2.3)
N Zg ZT W N .
l Decode l (Sec 2.4)
o
S _~  Decode I
N oe— Ny
(Sec 2.5)

Cl

Figure 3. Overview of our method: A molecular graph G is first
decomposed into its junction tree 7¢;, where each colored node in
the tree represents a substructure in the molecule. We then encode
both the tree and graph into their latent embeddings z7 and z¢.
To decode the molecule, we first reconstruct junction tree from z 7,
and then assemble nodes in the tree back to the original molecule.

® Node: a chemical structure, tree: potential structure, score: the probability of this structure.

Equivariant Diffusion for Molecule Generation in 3D (ICML22)
® Our E(3) Equivariant Diffusion Model (EDM) learns to denoise a diffusion process with an
equivariant network that jointly operates on both continuous (atom coordinates) and

categorical features (atom types).

Uni-Mol: A Universal 3D Molecular Representation Learning Framework (ICLR 2023)
® [n most MRL methods, molecules are treated as 1D sequential tokens or 2D topology graphs,
limiting their ability to incorporate 3D information for downstream tasks and, in particular,

making it almost impossible for 3D geometry prediction/generation.

Protein and Biology



Accurate structure prediction of biomolecular interactions with AlphaFold 3 (Nature)
® Inference:

d ’
Template 3! x
search =~ #
; Confidence
Genetic nputs 1 l ) module
search 1 1 (4 blocks)
Input Template MSA !
a8 embedder ~+—> module — module — 0 -100
oo (& @blocks) pay |  (@blocks)  (4blocks) Pairformer ; Diffusion o Ty
Sequences, generation H (48 blocks) o -+ module e
ligands, e % /(3 +24 +3blocks) ¥ %\
-y s |
Recycling Dlﬂusnon iterations

More papers are coming!

Dimension-free Score Matching and Time Bootstrapping for Diffusion Models

®  Establish the first (nearly) dimension-free sample complexity bounds for learning these score
functions. (log-log-d bound)

® Key idea: martingale-based error decomposition + variance bound.

® BSM (Bootstrapped Score Matching): a variance reduction technique.

2
-y L et
i=1teT Utz
L represents a regression task with noisy labels.
N
score(f) Z T~Pt; ”f(tl’x) - s(tl’ x)”2 where Vi =1t — ti-1

=2 is what we need

to bound.

®  Define the martmgale like

The martingale dlfference decomposition of H ! , exploiting the Markov1an structure of (1), has
terms of the form Q; := (G;,Y; — E[Y;| Fi_1]) adapted to the filtration {fl}ie[n], where G; is a F;_1
measurable random variable. The proof primarily uses the fact that for ¢; < ty < t3, E [z, |2t,, 4] =
E [z, |zt,] due to the Markov property.

Lemma 3. Let ( = %ﬁ for any f € H. Define

N ye=imte (t z@) N et (t,, m<’))
c=y 2 Ly
j=1 tj =N— tj
and define R; . as
0, for k=0,
Rij =4 (G k+1,1E[x(’>|x§jj_k A —ERIel) 1), forke N —1],
(G“ zt:) —-E [z&”mﬁ?] >, for k= N.

Let tg = 0. Consider the filtration defined by the sequence of o-algebras,

Fir=o({z? :1<j<ite TIU{a® :t >ty s}



Calculate the variance and derive concentration inequality.
Remark: I think there’s some typo, and no insight for the result. (Maybe variance reduction)

Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion
History-guided Video Diffusion. Thousand frames video era comes!
Noise level — mask mechanism.

Noise as Masking Diffusion Forcing Teacher Forcing Full-Seq. Diffusion

000
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Figure 2: Method Overview. Diffusion Forcing trains causal sequence neural networks (such as
an RNN or a masked transformer) to denoise flexible-length sequences where each frame of the
sequence can have a different noise level. In contrast, next-token prediction models, common in
language modeling, are trained to predict a single next token from a ground-truth sequence (teacher
forcing [65]), and full-sequence diffusion, common in video generation, train non-causal architectures
to denoise all frames in a sequence at once with the same noise level. Diffusion Forcing thus
interleaves the time axis of the sequence and the noise axis of diffusion, unifying strengths of both
alternatives and enabling completely new capabilities (see Secs. 3.2,3.4).

Simple and Effective Masked Diffusion Language Models
® Diffusion + AR
® Mask mechanism

changes in his starting lineup, Brees was hoping they
had little to prove Carolina I felt like
we didn  have enough on there was so pun
that more our guys at same so we'd up our
game," he said said Carolina was well at
"If that's part it, if you to try with what
you [ with What'd ? play Brees said.
say? That you're always ready to . 're
strong and ready to go to football."

The sample generation process begins with a sequence of all masked tokens. MDLM then replaces
these masked tokens with actual tokens in a random order.

How Much Is A Noisy Image Worth? Data Scaling Laws For Ambient Diffusion
® Ambient Diffusion and related frameworks train diffusion models with solely corrupted data
(which are usually cheaper to acquire) but ambient models significantly underperform

models trained on clean data.

® [fthe data’s noise is larger than the t-level noise, than we don’t learn it.
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This idea is closely related to Noisier2Noise (Moran et al., 2020). We underline that there are also alternative ways to
learn the optimal denoiser in this regime, such as SURE (Stein, 1981). However, SURE-based methods usually bring

a computational overhead, as one needs to compute (or approximate) a Jacobian Vector Product.
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Figure 1: ImageNet FID per-
formance (lower is better) for
models trained with different
amounts of clean and noisy data.
Performance of models trained with
only clean data (red curve) reduces
as we decrease the amount of data
used. Training with purely noisy
data (right-most points) also gives
poor performance — even if 100%
of the dataset is available. Train-
ing with a mix of noisy and clean
data strikes an interesting balance: a
model trained with 90% noisy and
10% clean data is almost as good
as a model trained with 100% clean
data.



